The State of Fibrous Dysplasia/McCune-Albright Syndrome Research

FIBROUSDYSPLASIAFOUNDATION'S
PATIENTANDFAMILYCONFERENCE2017

Michael T. Collins, MD
Chief Section on Skeletal Disorders and Mineral Homeostasis,
National Institute of Dental and Craniofacial Research
National Institutes of Health
Fibrous dysplasia /McCune-Albright Syndrome

Skeleton
- Craniofacial
- Axial
- Appendicular

Extra-skeleton
- Endocrine
 - thyroid
 - precocious puberty
- Skin
- Others
What causes FD/MAS?

- Gene: **GNAS**
- Protein: \(G\alpha_s\)
- Cells
- Tissue
What does $G\alpha_s$ do:
It is a master regulator of cell activity;
an “on and off switch”

- Skin
 - Café-au-lait
 - precocious puberty
- Ovary
 - fibrous dysplasia
 - hyperthyroidism
- Bone
- Thyroid
 - growth hormone excess
- Pituitary

Others: pancreas, heart, brain, etc.
The cells that make bone: skeletal stem cells, mesenchymal stem cells

- Stem cell
- Bone cells
- Osteoblast
- Osteocyte
- Cartilage cells (chondrocytes)
- Fat cells (adipocytes)
- Helps make blood cells (hematopoietic support)
Effects of G_{α_s} mutation in bone stem cells

- Abnormal bone cells
- Osteoblast
- Osteocyte
- Cartilage cells (chondrocytes)
- Fat cells (adipocytes)
- Stem cell

Helps make blood cells (hematopoietic support)
Affected tissues in FD/MAS
a somatic, mosaic condition

the “map” of affected tissues is charted in utero
What are the effects of in utero “mapping”?
Affected bones appear early

n = 109 subjects, 266 bone scans, f/u up to 32 y

(Hart, JBMR, 2007)
Onset of manifestations of affected tissues

- **Fibrous dysplasia**
- **Café-au-lait**
- **Precocious Pub.**
- **Thyroid**
- **Phosphate**
- **Growth hormone**
- **Cushing’s**

- **sub/pre-clinical**
- **clinically evident**
- **spontaneous resolution possible**

Complete staging after age 5+ allows for determination of most affected and unaffected tissues.
What are the effects of endocrine dysfunction on FD?

Untreated endocrine dysfunction makes FD worse

(Leet, JBMR, 2004)
The causes of FD/MAS are targets for treatment

Better surgical devices and techniques:
better devices for children, comparison of techniques

“stem cell” therapy: replace mutant cells with normal cells

Cell to cell and intracellular communication: identify and block the communication system in affected cells

Small molecule drugs: molecules that act specifically at the mutant protein

Oligonucleotide therapy: small stretches of DNA/RNA that block the mutant gene

Gene therapy: replace the mutant gene with a normal gene
Targets for treatment & care to promote improved quality of life

- gene
- protein
- cells
- tissue
- FDA
- pharma
- researchers
- physicians/therapists
- support groups
- patients/families
- trials
Targets for treatment & care to promote improved quality of life
What FD Does

What amazing people with FD Do!
One day FD won’t do this!

People with FD will be even more amazing!
Thank you: to the patients, families, and co-workers

Mary Scott Ramnitz
Diana Ovejero
Beth Brillante
Diala El-Maouche
Alison Boyce
Andrea Estrada
Andrea Burke
Lori Guthrie
Nisan Bhattacharyya
Luis Fernandez de Castro
Sri Tella
Pablo Florenzano
Rachel Gafni

Former Trainees
Elizabeth Hart
Azar Khosravi
Claudia Dumitrescu
Penny Andreopoulou
William H. Chong
Tarek Metwally
Jason Berglund

NIH Clinical Center
Edmund FitzGibbon
Scott Paul
Jeffrey Kim
Janice Lee
Clara Chen

DuPont Institute
Robert Stanton

National Institute of Dental & Craniofacial Research
Fibrous Dysplasia Foundation
International Consortium of FD Investigators
(US, UK, Netherlands, France, Italy, Chile)